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’ INTRODUCTION

Polyelectrolytes, among the most important classes of poly-
mers, have been widely used in industry and they are attracting
increasing attentions in recent years due to their biorelated
applications.1�3 When dissolved in polar solvents such as water,
the ionization of chemical groups from polyelectrolyte chain
backbones results in charged polymers and small counterions.
The long-range Coulomb interactions between these charged
species together with the short-range excluded volume interac-
tions pose great challenges in theoretical study of polyelectrolyte
systems. The challenges become more serious in particle-based
methods such as the molecular simulation techniques, where
computationally expensive algorithms are unavoidable as long as
the long-range interactions are present.4 On the contrary, there is
an efficient way to deal with the long-rangeCoulomb interactions
in field-based theories, where the electrostatic interaction is
converted to the short-range interaction by introducing the elec-
trostatic potential into the partition function during the Hub-
bard�Stratonovich transformation.5

The self-consistent field theory (SCFT), the most accurate
theory at the mean-field approximation level, is one of such field-
based theories. It has become a standard technique for studying
microphase separations of neutral block copolymers owing to the
efforts of Matsen and Schick,6 Drolet and Fredrickson,7 and
Rasmussen and Kalosakas8 on developing various highly efficient
algorithms or delicate screening techniques either in real space or

in spectral space.5,9 However, SCFT has not been widely used to
study microphase separations in polyelectrolyte systems. Very
few examples are available in the literature. The first systematic
construction of SCF formalism for polyelectrolytes is given by
Borukhov et al. in the middle 1990s, where a set of SCFT
equations and mean-field free energies were derived for poly-
electrolytes with various charge distributions in good solvents
using a path integral formulation.10,11 Random phase approxima-
tion (RPA) has been performed to calculate the monomer�
monomer structure factor S(q). Shi and Noolandi generalized
the theoretical framework developed by Borukhov et al. to multi-
component polyelectrolyte systems.12 This approachwas success-
fully applied to study the interface of a simple single-component
polyelectrolyte solution. Wang and co-workers further extended
the SCFT of polyelectrolytes to block copolyelectrolytes and
position-dependent dielectric constant.13 The lamellar phase
of a symmetric diblock polyelectrolyte solution has been exam-
ined in detail by solving the SCFT equations numerically. Kumar
and Muthukumar applied the SCFT calculations to investigate
the dependence of the counterion distribution on the interac-
tion parameter for the lamellar phase of a diblock copoly-
electrolyte.14 The transition boundaries of the disorder-lamellar
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transition, the cylinder-lamellar transition, and the sphere-cylinder
transition were calculated based on RPA analysis. Recently, Yang
et al. extended the reciprocal-space SCFT method originally
devised by Matsen and Schick6 to the polyelectrolyte systems,
where phase diagrams of A�B diblock copolyelectrolytes and
A�B�A triblock copolyelectrolytes, both with A blocks being
charged, were calculated.15 To date, however, there is still lack of
an efficient real-space SCFT method for studying the phase
separation of charged polymers other than in one-dimensional
(1D) space. This is mainly due to lack of a time-efficient algorithm
to solve SCFT equations when the generalized Poisson�Boltzmann
(PB) equation is involved. Nevertheless, real-space SCFT methods
do not require any a priori knowledge of symmetry, which
becomes a great advantage when one wants to search new phase
structures. In addition, the morphology of the equilibrium phase
is a natural consequence of the real-space calculation, which
provides important information for both theoretical and experi-
mental researchers. For instance, the distribution of solvent mole-
cules and counterions can be directly obtained by analyzing the
morphology.

In this article, by introducing the full multigrid algorithm
(FMG) to solve the PB equation, we develop a real-space numerical
scheme which can solve the SCFT equations of the charged poly-
mer system as efficient as the neutral polymer system. The num-
erical scheme is highly extensible and it is feasible to solve the
SCFT equations in both two-dimensional (2D) and three-
dimensional (3D) spaces. In principle, polyelectrolytes with any
architecture and with any number of blocks, each of which can be
either charged or neutral, can be treated using this numerical
scheme. In particular, a concentrated solution of a diblock
copolyelectrolyte consisting of a negatively charged (A) block
and a neutral (B) block has been considered in this work. A phase
diagram was constructed based on 2D SCFT calculations for the
chosen system. In addition to the lamellar phase (LAM), the
hexagonally packed cylinder phase (HEX) has been analyzed in
detail.

’THEORETICAL METHODS

A. SCFT Formalism. Here, we sketch a general theoretical
framework for a concentrated solution of diblock copolyelectro-
lytes containing nC polymer chains and nS solvent molecules with
or without salts. Each A�B copolymer has N total statistical
segments with the volume fractions f and 1� f for A and B blocks,
respectively. It is supposed that the polymer segment and the
solvent molecule have the same density F0, and the volume of
small ions is ignored. We use subscripts A, B, S, +, and � in
variables to denote A segments, B segments, solvent molecules,
cations, and anions, respectively. The valences of charged species
are represented by integer variables zi (i = A, B, +, and �).
To construct the statistical field theory for this charged system,

we adopt the continuous Gaussian chain model. The smeared
chargemodel is introduced to describe the charge distribution. In
this model, charges are assumed to distribute uniformly along the
chain contour. One example that should be well described by this
model is the strongly dissociating polyelectrolyte, such as poly-
(acrylic acid) (PAA). In addition, the primitive model is used to
describe the electrostatic interactions between two point charges
mediated by the solvent. The solvent is considered as a con-
tinuous medium with a dielectric constant. With the above
considerations, the free energy per chain of the system at volume

V and temperature T (in units of kBT where kB is the Boltzmann
constant) is given by13

F ¼ 1
V

Z
dr ½N∑

K
∑
L 6¼K

χKLϕKϕL � ∑
K
wKϕK

� ηð1� ∑
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Here, ϕK (ϕL) are density fields normalized by F0, and ωK are
corresponding conjugate potential fields introduced to exert inter-
actions on species K (L) (K, L = A, B, and S);ψ is the electrostatic
potential field; η is a Lagrange multiplier that ensures the incom-
pressibility of the system; χKL denote the Flory�Huggins interac-
tion parameters between species K and L; ε represents the dielectric
constantwhich is invariant across thewhole system, and it is rescaled
by 8π2ε0F0e

2b2/3 with ε0 the dielectric constant of vacuum, e the
unit charge, and b the length of a statistical segment (Kuhn length);
ϕ̅C � nCN/F0V and ϕ̅M � nM/F0V are the volume-averaged
densities for the block copolymer and for species M (M = S, +,
and �), respectively. Note that the spatial quantities in eq 1 are
rescaled by the radius gyration of an unperturbed Gaussian chain
Rg = b(N/6)1/2, i.e. r/Rg f r and V/Rg

d f V with d the
dimensionality of the system. In eq 1, QC is the normalized
single-chain partition function for copolymer and QM are the
normalized single-particle partition functions for species M.
Minimization of the free energy (eq 1) with respect to ϕK

leads to the equations of equilibrium potential fields wK(r) =
N∑L6¼KχKLϕL(r) + η(r). Similarly, the equilibrium density fields
can be obtained by minimizing the free energy with respect to wj

(j = A, B, S, +, and �). They are given by ϕA(r) = (ϕ̅C/QC)
R
0
f ds

qC(r,s)q*C(r,1 � s), ϕB(r) = (ϕ̅C/QC)
R
f
1ds qC(r,s)q*C(r,1 � s),

ϕS = (ϕ̅S/QS) exp[�wS(r)/N], and ϕ( = (ϕ̅(/Q() exp[�z(ψ-
(r)]. q(r,s) is a forward chain propagator which corresponds to
the probability of finding the end segment of the polymer chain
of length sN starting from the A block at location r, which satisfies
the modified diffusion equation

∂qðr, sÞ
∂s

¼ ∇2qðr, sÞ � ½wAðrÞ þ zAαANψðrÞ�qðr, sÞ, if s e fN
∇2qðr, sÞ � ½wBðrÞ þ zBαBNψðrÞ�qðr, sÞ, if s g fN

(

ð2Þ
with the initial condition q(r,0) = 1. αA andαB in eq 2 denote the
degrees of ionization of A and B blocks, respectively. The degree
of ionization is defined as the number of unit charges per
statistical segment. The backward chain propagator q*(r,s)
initiated from the end of the B block satisfies a diffusion equation
similar to eq 2.13 The normalized single-chain partition function
is given by QC = (1/V)

R
dr q(r,1), while the normalized single-

particle partition functions are given by QS = (1/V)
R
dr exp-

[�wS(r)/N] and Q( = (1/V)
R
dr exp[�z(ψ(r)].

To complete the set of SCFT equations, one needs to
minimize the free energy with respect to ψ to find the electro-
static potential in equilibrium. It is straightforward to show that
the equilibrium electrostatic potential satisfies the following
general Poisson�Boltzmann equation:

∇2ψðrÞ ¼ �N
ε
½αAzAϕAðrÞ þ αBzBϕBðrÞ þ zþϕþðrÞ þ z�ϕ�ðrÞ�

ð3Þ
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B. Numerical Method. The above mean-field equations can
be numerically solved by a quasi-Newton method with fast
convergence and remarkable accuracy.13 However, the quasi-
Newton method involves an inversion of a Jacobian matrix,
which is an algorithm with O(M3) computational complexity
where M is the scale of the problem. The scale of a problem is
defined as the total number of grids that the space has been
discretized into. For a 3D problem in a cubic cell,M is equal to L3,
where L is the number of discrete points in each side of the cell.
Therefore, a huge amount of operations, L6 for 2D problems and
L9 for 3D problems, are required, so that only one-dimensional
problems are feasible in practice based on the quasi-Newton
method. To overcome this difficulty, here we turn back to the
continuous steepest descent method5 which has been proven to
be a simple but effective strategy. The set of SCFT equations are
solved in a similar way as that described by Drolet and Fredrickson7

except the PB equation (eq 3). First, fields wA, wB, wS, and ψ are
initiated by random numbers or by preset values. Then the
modified diffusion equations for both forward and backward
chain propagators are solved by utilizing a pseudospectral algo-
rithm with nearly ideal computational complexityO(NsM lnM).8

After that, the density fields ϕj are evaluated form the known
potential fields. These densities are used to produce new fields
wA, wB, and wS. The auxiliary field η is updated according to
ηnew = ηold + λη(1 � ϕA � ϕB � ϕS) where λη is a relaxation
parameter controlling the strength of the incompressibility.
Given that we have found an efficient way to solve the PB equation,
the new electrostatic potential field can be constructed by a linear
mixing of the solution of the PB equation and the old field. Above
procedures form a typical computational unit of the continuous
steepest descent strategy. The computational unit is then exe-
cuted repeatedly until some stop criteria are eventually met.
If the solution of the PB equation is not taken into account, the

most time-consuming step during each iteration is the solution of
diffusion equations which involves at least O(NsM ln M) opera-
tions whereNs = 1/Δs is number of points the chain contour has
been discretized with Δs the contour step. The PB equation
reduces to a Poisson equation if the densities in the right-hand
side of eq 3 are replaced by those of the previous iteration.
Poisson equation is perhaps the most well-known linear differ-
ential equation. A large number of algorithms are available to
solve it numerically, the complexity of which ranges from O(M)
toO(M3). In this work, we introduce the full multigrid algorithm
(FMG) which is the most efficient one with optimal O(M)
complexity.16�18 In principle, only O(M) operations are needed
to solve eq 3 with FMG, which is negligible compared to that of
solution of diffusion equations as long as Ns ln M . 1, which is
fulfilled in most cases. Remarkably, charged polymer systems can
now be numerically solved in a time comparable to that of neutral
polymer systems. In other words, the FMG enables us to
calculate the phase behavior of charged polymer systems in both
two-dimensional (2D) and three-dimensional (3D) space.
One of drawbacks of the multigrid method is that there is no

such standard multigrid solver available. It is still a nontrivial task
to implement multigrid method for a given problem. Only after
the property of the differential equation has been well exploited,
the proper smoothing operator, restriction operator, and inter-
polation operator, the most important components for a multi-
grid program, can be chosen. In this work, we have successfully
implemented the FMG for eq 3. Each component in the program
has been carefully tuned to give ideal performance. Specifically,
we choose a red-black Gauss�Seidel relaxation scheme as the

smoothing operator, bilinear interpolation as the interpolation
operator, and full-weighting restriction as the restriction operator.17

The periodic boundary condition is imposed on all levels. The
correctness and accuracy of the implementation are verified by
solving analytical-solvable Poisson equations by comparing numer-
ical solutions with analytical solutions. To verify the efficiency of
the FMG program, we perform a speed test on our FMG
program and the software package MUDPACK-519 on the same
platform. We find that our implementation is 10�15% faster
than MUDPACK-5.
C. Case Study: Charged-Neutral Diblock Copolymers in a

Salt-Free Solution. To demonstrate the power of the numerical
method, we consider a salt-free solution of charged-neutral
diblock copolymers. In particular, we set N = 400, ϕ̅C = 0.8,
zA =�1, z+ = 1, and χAS = χBS = 0 (the solvent is a good solvent
for both A block and B block). Other parameters zB, αB, z�, and
ϕ̅� are all 0 for the B block is neutral and no salt is added to the
solution. By invoking the constraints of incompressibility and
electroneutrality, other volume-averaged densities given by
ϕ̅S = 0.2 and ϕ̅+ = 0.8αA f. With the above setup, we mainly
investigate the effects of following three parameters: f, χAB, and αA.
Numerical SCFT calculations are carried out in a 2D cell with

periodic boundary conditions. The cell with physical sizes lx� ly
is discretized into L� L lattices where L = 2m with a typicalm of 7.
The lattice spacings along the x and y directions are determined
by Δx=lx/L and Δy=ly/L. The typical lattice spacing in our
calculations is 0.03Rg. Note that here we intentionally use a much
smaller lattice spacing than 0.1�0.2Rg which is typical for neutral
polymer systems. The lattice spacing is small because lx and ly
should be small to ensure that the cell contains only one or two
periods of phase structure and L needs to be large because of
FMG. The smaller lattice spacing also improves the accuracy of
the solution though it consumes more computational time. The
value of Ns used to discretize the chain length is fixed at 200. As
long as the right-hand side of eq 3 is smooth enough (none ofN/ε,
αA, and χAB is too large), the continuous steepest descent scheme
is stable if the relaxation parameters are carefully chosen. A
working group of relaxation parameter are 0.05 for updating the
potential fields wA, wB and wS, 0.1 for updating the electrostatic
potential fieldψ, and 10 for updating the auxiliary field η. Some-
times smaller relaxation parameters are needed to stabilize the
algorithm, e.g., when the system is near phase boundaries, or the
interactions (either Flory-type or electrostatic) are strong. In
practice, the difference of mean-field free energies between two
consecutive iterations and the total residual error13 are both
monitored. We choose the total residual error being smaller than
10�9 as a stopping criterion. Typically, the stop criterion is met
after about 5,000 iterations. For calculations close to phase
boundaries, 50 000 or more iterations are needed to reach the
comparable precision. The typical time needed to complete one
such calculation is estimated to be 5000� 0.35/60 s≈ 30min on
a single 2.5 GHz CPU core.

’RESULTS AND DISCUSSION

A. Asymmetric Phase Diagram. As described previously, the
highly efficient FMG enables us to treat charged polymer problems
as neutral polymer problems at least in the sense of the numerical
computation. It becomes a routine work to construct phase dia-
grams of charged polymer systems in the χABN ∼ f parameter
space by SCFT calculations. The phase diagram of a concentrated
charged-neutral diblock copolyelectrolyte solution is presented in
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Figure 1a, where we have successfully determined phase bound-
aries for three phases, namely the disordered phase, the cylind-
rical phase (HEX), and the lamellar phase (LAM), while those
intrinsically 3D mesophases such as bcc spheres, close-packed
spheres, and bicontinuous gyroid is unreachable in 2D calculations.
To locate phase boundaries in relatively high accuracies (0.001

for composition f and 0.1 for χABN), we have devised a two-stage
scan scheme. At the first stage, the combinatorial screening
technique7 with slight modifications is used to roughly determine
the phase boundaries. The set of SCFT equations are solved in
real space with random initial conditions. The calculations will
converge to either stable or metastable phases. For high χABN
values, we fix χABN and perform a scan from low f to high f with a
step of 0.1 in a square cell. This scan path is parallel to the abscissa
axis (f) and thus is called a parallel scan. Along the scan path, it is
expected that we will encounter a disorder-to-cylinder transition
(ODT), followed by a cylinder-to-lamellar transition (OOT),
and then followed by two similar transitions in the reverse order.
For lower χABN values, χABN instead of f is varied from low value
to high value with a step of 0.5. This kind of scan is called a
vertical scan since the scan path is parallel to the vertical axis
(χABN). During the vertical scan, it will traverse an ODT fol-
lowed by an OOT (sometimes the OOTwill be bypassed as long
as the gap between LAM and HEX is smaller than the scan step
size). From these scans, we can roughly determine the phase
boundaries.
At the second stage, the scans are narrowed to the region close

to phase boundaries determined at the first stage. The SCFT

calculations are performed under given initial conditions. The
fields wA(r) and wB(r) are initialized by random numbers if the
disorder phase is expected, while they are initialized by a one-
period 2D lamellar pattern if LAM is expected, and they are
initialized by a two-period 2D hexagonal lattice pattern if HEX is
expected. It should be noted that HEX is not compatible with the
square cell due to the symmetry. Therefore, we will use a
rectangle cell with lx: ly = 2:(3)1/2 to perform calculations when
HEX is expected. For all calculations, the field wS(r) is initialized
by random numbers and the field ψ(r) is initialized by 0. To
determine the equilibrium phase for each point in the phase
diagram, we also systematically vary cell sizes to eliminate the size
effect of the simulation cell. The equilibrium phase at each point
(f, χABN) is then assigned to the calculated phase structure with
the lowest free energy. Each symbol in Figure 1a corresponds to
such a determination of the equilibrium phase. The exact transition
phase boundary should lie between two neighboring symbols of
different phases, whose gap clearly determines the accuracy of the
phase boundary.
To get a rough idea about how good our SCFT calculations

are, we plot the spinodal line (the dashed line) of the concen-
trated solution predicted by random phase approximation (RPA)
in Figure 1a. It can be seen that the binodal line (the phase
boundary between the disorder phase and HEX) determined by
our SCFT calculations and the spinodal line predicted by RPA
theory are so close that they are indistinguishable. This behavior
is typical for diblock copolymer melts,20 and it also occurs in
charged diblock copolymer melts.14 In the latter case, the binodal
line and the spinodal line get closer and closer when either the
degree of polymerization or the degree of ionization increases.
Since our system is rather similar to the reported one and the
similar behavior was actually observed, it implies that our SCFT
calculations are indeed a valid tool for predicating of phase diagrams.
It is worth noting that the spinodal line in this article is

obtained by conducting a stability limit analysis on the partial
structure factor, SAA(q) = ÆδϕA(q)δϕA(�q)æ in Fourier space,
which characterizes the spatial correlation of the concentration
fluctuations of A blocks. The partial structure factor SAA(q) has
the form21

NSAA
�1ðqÞ ¼ NSneutral

�1ðqÞ þ ðαANÞ2
εx þ ðαANÞf ϕ̅C

ð4Þ

where x = q2Rg
2. The first term in the right-hand side of the above

equation contains the contributions of all interactions except the
electrostatic interaction, which is identical to the corresponding
partial structure factor of the neutral diblock copolymer solution.
This term can be derived from the linear response theory

Sneutral
�1ðqÞ ¼

1=ϕ̅C þ ϑNht þ ðχABNÞh12�ðχABNÞ½ðχABNÞ þ 2ϑN�ϕ̅Cðh1h2�h12
2=4Þ

N½h1 þ ϑNϕ̅Cðh1h2 � h12
2=4Þ�

ð5Þ
where h1 is the Debye function defined as h1 = h(f,x) =
2(fx + e�fx � 1)/x2, and h2 = h(1 � f,x), ht = h(1,x), and
h12 = ht � h1 � h2. In eq 5, ϑ = 1/ϕ̅S � 2χPS is an excluded
volume parameter related to the short-range interactions
between solvent molecules and polymeric segments. The second
term in the right-hand side of eq 4 contains the contribution
originated from the long-range Coulomb interactions at the
Debye�H€uckel level.

Figure 1. Phase diagrams of a concentrated salt-free solution of diblock
copolyelectrolytes obtained by 2D SCFT calculations. The degree of
ionization αAN is fixed at 20. Key: red squares, LAM; green filled circle,
HEX; black empty circle, disordered phase; dashed line, the spinodal line
predicted by RPA theory; solid line, the HEX�LAM phase boundaries
from 2D SCFT calculations.
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The partial structure factor SAA(q) possesses a maximum at a
certain wavelength qs whose value is independent of the segrega-
tion effects. However, the shape of SAA(q) strongly depends on
the segregation effects. For neutral polymers, the controlling
parameter is the product χABN rather than the interaction para-
meter χAB alone, while for charged polymers, there is an ad-
ditional parameter the product of the degree of ionization and the
degree of polymerization αAN due to the electrostatic interac-
tion. Equations 4 and 5 clearly reveal these two kinds of dependen-
cies. There is a critical value of χABN, (χABN)s, beyond which the
peak in SAA(q) diverges at q = qs. (χABN)s is thus identified as the
stability limit of the system. Unlike neutral polymers, the
spinodal line in the (χABN)s ∼ f plot is no longer universal but
depends on the value of αAN. In other words, the spinodal line
should remain unchanged as long as αAN is fixed no matter how
αA and N are varied independently. Therefore, it can be con-
sidered as another type of universality specific to charged polymer
systems. This assertion should be safely extended to all bound-
aries. We would like to emphasize that this kind of universality is
an important feature of charged polymer systems that seems to
be overlooked for years. Besides of χABN and αAN, the dielectric
constant ε is another interesting parameter that can influence the
phase diagram of charged polymer systems as can be seen from
the second term in the right-hand side of eq 4.
As the validity of the 2D SCFT calculation is established, it is

ready for us to examine some properties of the phase diagram.
The most obvious difference on the phase diagram between the
charged polymer and the neutral polymer is that the ordered
phase region of the former phase diagram is pushed upward.
Taking f = 0.5 as an example, the interaction parameter of the
critical point is 24.65 ( 0.05 as compared to 10.495 for neutral
diblock copolymer melt and 13.119 for neutral diblock copoly-
mer solution. The increase of the critical interaction parameter
means that the miscibility of A and B blocks are enhanced by
introduction of charges. Marko and Rabin suggested that the
enhancement of miscibility is mainly due to the release of counter-
ions of the charged polymer chains which significantly increases
the mixing entropy.22 It should be pointed out that the electro-
static interaction among charged species have less important effect
on the enhancement of miscibility than the release of counterions.
Another difference between the charged polymer system and

the neutral polymer system is that the phase diagram of the
charged polymer system is asymmetric. In Figure 1a, the asymmetry
is not that obvious. RPA theory predicts that the degree of
asymmetry will enhance with the increase of αAN.

14 To illustrate
the asymmetry clearly, the region near the critical point is am-
plified in Figure 1b. It can be seen that the composition f at the
critical point shifts to 0.53 in this particular case (RPA theory
predicts 0.536) as compared to 0.5 for neutral diblock copoly-
mers. Moreover, the spinodal line, the binodal line, and the OOT
boundary (solid lines in Figure 1) are all asymmetric. These
asymmetries lead to the shift of HEX and LAM regions of the
phase diagram toward high f end. In particular, theHEX region to
the left of the critical point is enlarged and that to the right is
contracted as seen in Figure 1a. This behavior is similar to the
case in which the statistic segment length of the A block is larger
than that of the B block.23,24 In contrast to the enhancement of
miscibility, the asymmetry of the phase diagram is mainly caused
by the electrostatic interaction.
These results may be very helpful for experimental studies. For

diblock copolymers with one charged block, the critical point no
longer locates at f = 0.5. Consequently, the equilibrium phase

near f = 0.5 is not necessary LAM. This fact may explain why
HEX and gyroid were often observed near f = 0.5 in poly(styrene-
sulfonate-b-methybutylene) (PSS�PMB) copolymers where
PSS is the charged block and PMB is the neutral block.25,26

The PSS blocks were prepared by randomly sulfonating PS
blocks with a sulfonation level ranging from 10% to 50%. Since
the sulfonic acid group is strongly acidic, PSS should be well
described by the smeared charge model. Therefore, one can take
the sulfonation level as the degree of ionization of PSS blocks.
The degree of ionization in these samples is much higher than 5%
used in our SCFT calculations, which should lead to much larger
degree of asymmetry of the phase diagram than that shown in
Figure 1a. Hence HEX will be the most possible equilibrium
phase in the region between f = 0.45 and f = 0.5. In 3D space as in
the experiments, gyroid phase is also possible. In light of the
discussion on the universality of the controlling parameters
(χABN and αAN), it is important to note that the phase diagrams
reported in ref 26 are very complicated since the product αAN
was not fixed in a same phase diagram. These phase diagrams can
consist of phase boundaries with very strange shapes, depending
on how N and αA are varied.
On the basis of the above discussion, it can be concluded that

our SCFT calculations qualitatively agree with the experimental
findings. However, one should be aware that the Gaussian chain
model may be no longer adequate for describing the chain statistics
when the charge density on the chain becomes large (i.e., αA is
large). The large charge density on the chain will inevitably rigidify
the chain, where the worm-like chain model should be more ap-
propriate. Moreover, when the charge density on the polyelec-
trolyte chain exceeds some critical value, Manning condensation
will occur and the charge density on the chain should be renorma-
lized. To note further, our approach is in essential at the mean-
field level, which means that the approach breaks down when
multivalent ions are introduced because the correlation between
those counterions can no longer be ignored. In this work, how-
ever, we are only interested in the cases where the Gaussian chain
model still works. Meanwhile, only univalent counterions are
considered. Incorporating the worm-like chain model into SCFT
for charged polymer system should be the future work.
B. Structures of Ordered Phases. Although RPA theory can

predict the equilibrium phase, it is unable to provide information
about the underlying structures of the equilibrium phases, e.g.,
the density distributions of the A segments, the B segments, the
solvent molecules, and the charged components (the free counter-
ions and the charges distributed on the A blocks). On the contrary,
the structure information is a direct consequence of the SCFT
calculations. In literature, real-space 1D SCFT calculations are
performed, where only 1D structure, i.e. lamellar phase, can be
observed. In this work, real-space 2D SCFT calculations allow us
to study an additional structure: HEX.
Figure 2 shows typical density distributions of the polymer

segments and the solvent molecules, accompanied by the corre-
sponding density distributions of the neutral diblock copolymer
solution for the sake of comparison. It can be seen that the
lamellar phase is resulted for the symmetrical charged diblock
copolymer solution as expected. The system undergoes a micro-
phase separation into two distinct domains: the neutral-block-
rich domain (the left regions of Figure 2, parts a and c) and the
charged-block-rich domain (the right regions of Figure 2, parts a
and c). Similar to the neutral diblock copolymers, the density
distributions in the A-rich domain and in the B-rich domain are
perfectly symmetric. However, the interfaces between the A-rich
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domain and the B-rich domain in the neutral diblock copolymer
solution are much sharper than those in the charged diblock
copolymer solution under the same condition, indicating that the
miscibility of A and B blocks is enhanced by introducing charges.
More interestingly, the solvent molecules not only prefer gather-
ing in the interfacial region as they do in the neutral diblock
copolymer solution but also prefer staying in the charged-block-
rich domain. The solvent density is peaked at the center of the
interface (f = 0.5) and decays more rapidly into the charged-
block-rich domain than the neutral-block-rich domain, unlike the
neutral diblock copolymer solution where the density decays
symmetrically into both sides. Consequently, the solvent density
is higher than the averaging value ϕ̅S in the interfacial region and
in the charged-block-rich domain. For the charged polymer system,
we also observed that the peak of the solvent density at themiddle of
the interface is pronounced. Meanwhile, the decay lengths are
shortened. These observations suggest stronger segregation of the
solvent molecules between the charged-block-rich domain and
the neutral-block-rich domain. This kind of unbalanced distribu-
tion of solvent molecules in one lamellar period is first demon-
strated here. The fluctuation of the solvent molecules may have
some important consequences in practical situations such as the
transportation of small ions.
Next, let us have a look at the charge density distribution of the

free counterions and the net charge density distribution, which
are shown in Figure 3a and 3b, respectively. The charge density
distribution of the free counterions is equivalent to the density
distribution of the free counterions since z+ = 1. The net charge
density is a local variable measured by ϕe(r)=�αAϕA(r)+ϕ+(r). It
can be seen that the counterions can dissociate from polymer chains
and diffuse into the neutral-block-rich domain. As a consequence,

the overall charge in charged-block-rich domain is negative and it
is positive in the neutral-block-rich domain. At the interfaces, the
net charge density tends to be zero. In order to view the detailed
variation of charge densities, we plotted the charge density profiles
along the layer normal in Figure 2c. As shown in Figure 2c, the
counterion charge density in the charged-block-rich domain is
above the averaging value ϕ̅+ = 0.02, while it is below this value in
the neutral-block-rich domain. In contrast to the density dis-
tribution of the polymer segments, the charge density profiles are
asymmetric. The charge density profile of the free counterions
exhibits a broader peak in the neutral-block-rich domain than the
peak in the charged-block-rich domain, whereas the net charge
density profile behaves in an opposite manner. Although the
electrical double-layers are not obvious in the net charge density
profile, it will become more obvious when either χABN or αAN
increases. In the net charge density profile, one can still identify a
faint peak located at x/lx≈0.65 rather than at x/lx = 0.5 where the
peak of the solvent density locates, implying that the electrical
double-layer is actually formed. The decay of the peak (the one
at x/lx≈ 0.65) into the charged-block-rich domain is so slow that
it interferes with the one decaying from the peak of the adjacent
interface (the one at x/lx ≈ 0.85), leading to a broad peak at
x/lx = 0.75 (see the inset of Figure 3c). On the other hand, in the
neutral-block-rich domain, the peak of the electrical double-layer
in this domain is so broad that it overlaps the peak of the adjacent
interface, leading to an overall broad peak. It is worth mentioning
that we have also studied the dependencies of the charge densities
on χABN and αAN. The results are essentially the same as those

Figure 3. Charge density distribution of the free counterions (a) and
the net charge density distribution (b) calculated by SCFTwith the same
parameters as those in Figure 2. The charge density of the free coun-
terions is normalized by the averaging value ϕ̅+ and rescaled via ϕ̂+(r) =
ϕ+(r)/max(ϕ+(r)). The net charge density distribution is plotted in red
for negative charges and in green for positive charges. It is normalized by
ϕ̂e(r) = |ϕe(r)|/ϕ̅+. (c) Charge density profile of the free counterions
(black solid line) and the net charge density profile (blue dash line)
along the layer normal. The inset is a zooming in plot of the net charge
density profile.

Figure 2. Density distributions of type A (red) and B (blue) segments
(left columns), and solvent molecules (right columns) for charged-
neutral diblock copolymer solutions (top row) and the same solutions of
neutral diblock copolymers (bottom row) with f = 0.5, χABN = 35. The
degree of ionization for charged blocks is αAN = 20. The cell sizes are
(a, b) 2.7� 2.7 Rg

2 and (c, d) 4.4� 4.4 Rg
2. For all figures, the purer and

the brighter the color is, the higher the corresponding concentration is.
This applies to all following figures. The concentration of solvent has
been rescaled according to ϕ̂S(r) = [ϕS(r)�min(ϕS(r))]/[max(ϕS(r))�
min(ϕS(r))].
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reported in ref 13 and 14 despite the fact that their results were
obtained from 1D SCFT calculations.
When the composition f increases to 0.7, the charged-neutral

diblock copolymer solution tends to phase separation into HEX
phase with intermediate interaction parameters (30<χABN < 80)
according to the phase diagram in Figure 1a. Our 2D SCFT
calculations enable the study of the detailed structure of the HEX
phase. The typical morphologies for the HEX phase are pre-
sented in Figure 4. In order to be compatible with the symmetry
of the HEX phase, the ratio of the width (lx) and height (ly) of the
cell is fixed at 2: (3)1/2. This kind of simulation cell can exactly
contain two unit cells of the HEX phase. As expected, the density
distributions strongly depend on χABN. The interfaces between
the major phase (the charged-block-rich domain) and the minor
phase (the neutral-block-rich domain) become sharper as χABN
increases (see Figure4, parts a and c). Meanwhile, the maximum
densities of the A and B segments approach the limited value
ϕ̅C = 0.8. The feature of the solvent density distribution is similar
to the LAM phase; i.e., the solvent molecules are depleted from
the neutral-block-rich domain and tend to gather in the inter-
facial region and in the charged-block-rich domain (see Figure 4,
parts b and d). Moreover, the tendency of the segregation of
solvent molecules between the major phase and the minor phase
gets stronger and stronger as χABN increases.
To uncover the details of the density distributions, we plot the

density profiles along two specific directions (the x and y directions)
for the morphologies presented in Figure 4, as shown in Figure 5.
Instead of plotting the density profiles of the A and B segments
individually, we plot the difference ϕA(r)� ϕB(r). Therefore, the
positive part of the profile corresponds to the A-block-rich domain,
i.e. the charged-block-rich domain. Intriguingly, one can observe
that there is a weak minimum (at y/ly = 0) of the density profile
ϕA(r) � ϕB(r) in the charged-block-rich domain along the y
direction (see Figure 5b), while for the LAM phase, nominimum
exists within the charged-block-rich domain. This minimum is
due to the symmetry of the HEX phase. For the solvent density

distribution, the deviation of the solvent density from the averaging
value ϕ̅S in charged-block-rich domain is quite different from that
in the neutral-block-rich domain. The density of the solvent is
nearly identical to the averaging value in the charged-block-rich
domain, while it is much below the averaging value in the neutral-
block-rich domain. In other words, the excess solvent molecules
in the interfacial region are mainly transported from the neutral-
block-rich domain.
Like the LAM phase, we also analyzed the charge distributions

of the HEX phase. The charge density distribution of the free
counterions and the net charge density distribution are presented
in Figure 6, and their density profiles along the x direction are
given in Figure 7. Here, the effects of χABN and αAN on the
charge density distributions are considered independently. Let us
first look at the top row of Figure 6 where χABN increases from 35
to 50 from the left column to the right column. On the one hand,
at low χABN close to the phase boundary, there are a considerable
number of free counterions in the neutral-block-rich domains. As
χABN increases, more and more free counterions are restricted
into the charged-block-rich domain, leading to sharper contrast
of the charge density of the free counterions in the charged-
block-rich domains and in the neutral-block-rich domains as
shown in Figure 6, parts a and c. On the other hand, as χABN
increases, the density of the A segments saturates to the limited
value ϕ̅C = 0.8 to form a plateau in the density profile of the
charged-block-rich domain. As a result, in the charged-block-rich
domain, the gradual increase of the charge density of free counterions

Figure 4. Density distributions of the A segments, the B segments (odd
columns), and solvent molecules (even columns) for the charged-
neutral diblock copolymer solution with f = 0.7 and αAN = 20. The
interaction parameters χABN are (a, b) 35 and (c, d) 50. The cell sizes are
(a, b) 6.35� 5.50 Rg

2 and (c, d) 7.27� 6.30 Rg
2. The solvent density is

scaled as described in Figure 2.

Figure 5. Density profiles of the A and B segments (solid lines) and the
solvent (dash lines) along (a) the x direction and (b) the y direction
across the center of the circular domain of the minor phase in Figure 4.
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(bear positive charges) and the limited increase of the density of
the A segments (bear negative charges) give a drop of the net
charge density in the domain. The drop of the net charge density
is clearly illustrated by the dark regions inside the green disks as
shown in Figure 6d. The dark regions become darker and larger
with increasing χABN. It has been proposed that all free coun-
terions will be confined to the charged domains in the segrega-
tion limit (χABN f ∞).14 Therefore, the dark regions will
eventually occupy the whole area of the charged-block-rich

domains in the segregation limit, which results in electroneu-
trality everywhere.
Analysis of the charge density profiles gives the same extra-

polation. Figure 7a shows the charge density profile of the free
counterions and the net charge density profile along the x
direction in Figure 6a�d, where one can easily identify the elec-
trical double-layers at the interfaces. The peaks in the electrical
double-layers become sharper as the miscibility of the A and B
segments reduces. It is expected that in the segregation limit,
these peaks becomes so sharp that their widths tend to 0, and the
peaks with positive intensity cancels out the peaks with negative
intensity. Consequently, the net charge density profile is stretched to
a flat line parallel to the abscissa axis with ϕe(r) = 0.
As we already know, contrary to the interaction parameter

χABN, the increase of the degree of ionization αAN enhances the
miscibility of the charged blocks and the neutral blocks. One may
intuitively guess that αAN will have an exactly opposite effect on
the charge density distribution of the free counterions and the net
charges density distribution as χABN does. However, the case
here is a little complicated since the degree of ionization directly
controls the averaging value of the charge density of the free
counterions via ϕ̅+ = 0.8f αA. After the completion of the
microphase separation, the charge density of the free counterions
shall spatially fluctuate around the averaging value. To compare
the charge density distribution of the free counterions at different
degrees of ionization, we scale them by the averaging value ϕ̅+ (see
the caption of Figure 7b). Surprisingly, in the range of small degrees
of ionization (αAN e 0.04), increasing αAN leads to stronger
segregation of counterionswhile the segregation of A andBblocks is
weakened. Meanwhile, the electrical double-layers in the net charge
density profiles are enhanced. The underlying mechanism of this
unexpected phenomenon is not fully understood at present. We
propose that the increase of αAN must have two effects: one is to
enhance the miscibility of the charge blocks and the neutral blocks;
the other is to enhance the separation of counterions between the
charged-block-rich-domain and the neutral-block-rich domain. For
small degrees of ionization, the enhancement of the separation of
counterions overwhelms the enhancement of miscibility, leading to
the strong separation of the counterions. While for large degrees of
ionization, the enhancement of the miscibility will take over the
enhancement of the separation of counterions, so that the as-
expected effect of αAN should be restored (see the profiles with
20 < αAN < 28 in Figure 7b). It is found that when αAN > 28, the
equilibrium phase turns out to be homogeneous.

Figure 6. Charge density distribution of the free counterions (odd columns) and the net charge density (even columns) depend on the interaction
parameter χABN (top row) and the degree of ionization αAN (bottom row) with f = 0.7. χABN are (a, b, e-h) 35 and (c, d) 50. αAN are (a�d) 20, (e, f) 4,
and (g, h) 24. The cell sizes are (a, b) 6.35 � 5.50 Rg

2, (c, d) 7.27 � 6.30 Rg
2, (e, f) 8.66 � 7.50 Rg

2, (g, h) 5.89 � 5.10 Rg
2. The charge density of

counterions and the net charge density are rescaled as described in Figure 3.

Figure 7. The dependences of the charge density profile of the free
counterions (solid line) and the net charge density profile (dashed line)
along the x direction on (a) the interaction parameter χABN and (b) the
degree of ionization αAN. αAN = 20 in part a; χABN = 35 in part b. The
charge density of the free counterions is scaled according to ϕ̂+(r) =
ϕ+(r)/ϕ̅+ in part b. All other parameters are the same as those in
Figure 6.



8269 dx.doi.org/10.1021/ma2010266 |Macromolecules 2011, 44, 8261–8269

Macromolecules ARTICLE

’CONCLUSIONS

In this study, we developed a highly efficient numerical scheme
for solving the SCFT equations containing a general Poisson�
Boltzmann equation in real space. The introduction of the full
multigrid algorithm drastically reduces the computational time
for the solution of the PB equation. The time consumption is
negligible in comparison with the solution of the modified diffusion
equations. The power of this technique was demonstrated by per-
forming a series of real-space 2D SCFT calculations to construct the
phase diagram of a concentrated charged-neutral diblock copolymer
solution.

The phase diagram of the charged-neutral diblock copolymer
solution is asymmetric. The homogeneous phase is stabilized by
introducing dissociable charges onto the polymer backbones.
Increasing the degree of ionization (αAN) enlarges the parameter
space of the homogeneous phase. Meanwhile, the critical point
shifts to higher compositions (f). Consequently, the ODT phase
boundary and the OOT phase boundaries are also lose their
mirror symmetry. These changes of the phase diagram lead to
larger parameter space for the HEX phase near f = 0.5, which can
be used to explain the recent experimental results. Our numerical
studies are consistent with the RPA theory, the 1D SCFT cal-
culations, and the reciprocal-space SCFT calculations. The detailed
structures of the ordered phases were examined. And the effects
of the interaction parameter (χABN) and αAN on the density
distributions of the polymer segments, the solvent, and the
charge components were analyzed systematically. It was found
that the increase of χABN and the decrease of αAN have similar
effects on the density distributions of the polymer segments and
the solvent, while they influence the charge density distributions
in a quite different manner.

Owing to the fact that the implementation of FMG is indepen-
dent from the implementation of the continuous steepest descent
scheme, the numerical approach developed in this work is highly
extensible. For example, it is straightforward to apply it to explore
ordered structures in 3D space, to study other chain architec-
tures, other charge distribution models, and other statistics chain
models such as the worm-like chain model (with this model,
study of the strongly charged polyelectrolytes becomes possible).
Furthermore, many other parameters, such as the dielectric con-
stant, the concentration of the added salts, the concentration of
the polymers, are all ready to be examined without altering the
implementation. In addition, it is also valuable to analyze the
domain spacings of the ordered structures, which can be directly
obtained in real-space SCFT calculations. The dependences of
the domain spacings on various controlling parameters will be
reported elsewhere. We hope that the real-space SCFT tech-
nique devised in this work shall advance the SCFT study of the
ordered structures in charged polymer systems on surfaces (2D),
in membranes (2D), and in bulk (3D).
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